Logo Search packages:      
Sourcecode: k3b version File versions

src_sinc.c

/*
** Copyright (C) 2002,2003 Erik de Castro Lopo <erikd@mega-nerd.com>
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#include "config.h"
#include "float_cast.h"
#include "common.h"

#define     SINC_MAGIC_MARKER MAKE_MAGIC(' ','s','i','n','c',' ')

#define     ARRAY_LEN(x)      ((int) (sizeof (x) / sizeof ((x) [0])))

/*========================================================================================
**    Macros for handling the index into the array for the filter.
**    Double precision floating point is not accurate enough so use a 64 bit
**    fixed point value instead. SHIFT_BITS (current value of 48) is the number
**    of bits to the right of the decimal point.
**    The rest of the macros are for retrieving the fractional and integer parts
**    and for converting floats and ints to the fixed point format or from the
**    fixed point type back to integers and floats.
*/

#define MAKE_INCREMENT_T(x)   ((increment_t) (x))

#define     SHIFT_BITS                    16
#define     FP_ONE                              ((double) (((increment_t) 1) << SHIFT_BITS))

#define     DOUBLE_TO_FP(x)               (lrint ((x) * FP_ONE))
#define     INT_TO_FP(x)                  (((increment_t) (x)) << SHIFT_BITS)

#define     FP_FRACTION_PART(x)           ((x) & ((((increment_t) 1) << SHIFT_BITS) - 1))
#define     FP_INTEGER_PART(x)            ((x) & (((increment_t) -1) << SHIFT_BITS))

#define     FP_TO_INT(x)                  (((x) >> SHIFT_BITS))
#define     FP_TO_DOUBLE(x)               (FP_FRACTION_PART (x) / FP_ONE)

/*========================================================================================
*/

typedef int32_t increment_t ;
typedef float     coeff_t ;

enum
{
      STATE_BUFFER_START      = 101,
      STATE_DATA_CONTINUE     = 102,
      STATE_BUFFER_END  = 103,
      STATE_FINISHED
} ;

typedef struct
{     int         sinc_magic_marker ;

      int         channels ;
      long  in_count, in_used ;
      long    out_count, out_gen ;

      int         coeff_half_len, index_inc ;
      int         has_diffs ;

      double      src_ratio, input_index ;

      int         coeff_len ;
      coeff_t const     *coeffs ;

      int         b_current, b_end, b_real_end, b_len ;
      float *pdata ;
      float buffer [1] ;
} SINC_FILTER ;

static double calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch) ;

static void prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len) ;

static void sinc_reset (SRC_PRIVATE *psrc) ;

static coeff_t const high_qual_coeffs [] =
{
#include "high_qual_coeffs.h"
} ; /* high_qual_coeffs */

static coeff_t const mid_qual_coeffs [] =
{
#include "mid_qual_coeffs.h"
} ; /* mid_qual_coeffs */

static coeff_t const fastest_coeffs [] =
{
#include "fastest_coeffs.h"
} ; /* fastest_coeffs */

/*----------------------------------------------------------------------------------------
*/

const char*
sinc_get_name (int src_enum)
{
      switch (src_enum)
      {     case SRC_SINC_BEST_QUALITY :
                  return "Best Sinc Interpolator" ;

            case SRC_SINC_MEDIUM_QUALITY :
                  return "Medium Sinc Interpolator" ;

            case SRC_SINC_FASTEST :
                  return "Fastest Sinc Interpolator" ;
            } ;

      return NULL ;
} /* sinc_get_descrition */

const char*
sinc_get_description (int src_enum)
{
      switch (src_enum)
      {     case SRC_SINC_BEST_QUALITY :
                  return "Band limitied sinc interpolation, best quality, 97dB SNR, 96% BW." ;

            case SRC_SINC_MEDIUM_QUALITY :
                  return "Band limitied sinc interpolation, medium quality, 97dB SNR, 90% BW." ;

            case SRC_SINC_FASTEST :
                  return "Band limitied sinc interpolation, fastest, 97dB SNR, 80% BW." ;
            } ;

      return NULL ;
} /* sinc_get_descrition */

int
sinc_set_converter (SRC_PRIVATE *psrc, int src_enum)
{     SINC_FILTER *filter, temp_filter ;
      int count ;

      /* Quick sanity check. */
      if (SHIFT_BITS >= sizeof (increment_t) * 8 - 1)
            return SRC_ERR_SHIFT_BITS ;

      if (psrc->private_data != NULL)
      {     filter = (SINC_FILTER*) psrc->private_data ;
            if (filter->sinc_magic_marker != SINC_MAGIC_MARKER)
            {     free (psrc->private_data) ;
                  psrc->private_data = NULL ;
                  } ;
            } ;

      memset (&temp_filter, 0, sizeof (temp_filter)) ;

      temp_filter.sinc_magic_marker = SINC_MAGIC_MARKER ;
      temp_filter.channels = psrc->channels ;

      psrc->process = sinc_process ;
      psrc->reset = sinc_reset ;

      switch (src_enum)
      {     case SRC_SINC_BEST_QUALITY :
                        temp_filter.coeffs = high_qual_coeffs ;
                        temp_filter.coeff_half_len = (sizeof (high_qual_coeffs) / sizeof (coeff_t)) - 1 ;
                        temp_filter.index_inc = 128 ;
                        temp_filter.has_diffs = SRC_FALSE ;
                        temp_filter.coeff_len = sizeof (high_qual_coeffs) / sizeof (coeff_t) ;
                        break ;

            case SRC_SINC_MEDIUM_QUALITY :
                        temp_filter.coeffs = mid_qual_coeffs ;
                        temp_filter.coeff_half_len = (sizeof (mid_qual_coeffs) / sizeof (coeff_t)) - 1 ;
                        temp_filter.index_inc = 128 ;
                        temp_filter.has_diffs = SRC_FALSE ;
                        temp_filter.coeff_len = sizeof (mid_qual_coeffs) / sizeof (coeff_t) ;
                        break ;

            case SRC_SINC_FASTEST :
                        temp_filter.coeffs = fastest_coeffs ;
                        temp_filter.coeff_half_len = (sizeof (fastest_coeffs) / sizeof (coeff_t)) - 1 ;
                        temp_filter.index_inc = 128 ;
                        temp_filter.has_diffs = SRC_FALSE ;
                        temp_filter.coeff_len = sizeof (fastest_coeffs) / sizeof (coeff_t) ;
                        break ;

            default :
                        return SRC_ERR_BAD_CONVERTER ;
            } ;

      /*
      ** FIXME : This needs to be looked at more closely to see if there is
      ** a better way. Need to look at prepare_data () at the same time.
      */

      temp_filter.b_len = 1000 + 2 * lrint (ceil (temp_filter.coeff_len / (temp_filter.index_inc * 1.0) * SRC_MAX_RATIO)) ;
      temp_filter.b_len *= temp_filter.channels ;

      if ((filter = calloc (1, sizeof (SINC_FILTER) + sizeof (filter->buffer [0]) * (temp_filter.b_len + temp_filter.channels))) == NULL)
            return SRC_ERR_MALLOC_FAILED ;

      *filter = temp_filter ;
      memset (&temp_filter, 0xEE, sizeof (temp_filter)) ;

      psrc->private_data = filter ;

      sinc_reset (psrc) ;

      count = (filter->coeff_half_len * INT_TO_FP (1)) / FP_ONE ;

      if (abs (count - filter->coeff_half_len) >= 1)
            return SRC_ERR_FILTER_LEN ;

      return SRC_ERR_NO_ERROR ;
} /* sinc_set_converter */

static void
sinc_reset (SRC_PRIVATE *psrc)
{     SINC_FILTER *filter ;

      filter = (SINC_FILTER*) psrc->private_data ;
      if (filter == NULL)
            return ;

      filter->b_current = filter->b_end = 0 ;
      filter->b_real_end = -1 ;

      filter->src_ratio = filter->input_index = 0.0 ;

      memset (filter->buffer, 0, filter->b_len * sizeof (filter->buffer [0])) ;

      /* Set this for a sanity check */
      memset (filter->buffer + filter->b_len, 0xAA, filter->channels * sizeof (filter->buffer [0])) ;
} /* sinc_reset */

/*========================================================================================
**    Beware all ye who dare pass this point. There be dragons here.
*/

int
sinc_process (SRC_PRIVATE *psrc, SRC_DATA *data)
{     SINC_FILTER *filter ;
      double            input_index, src_ratio, count, float_increment, terminate ;
      increment_t increment, start_filter_index ;
      int               half_filter_chan_len, samples_in_hand, ch ;

      if (psrc->private_data == NULL)
            return SRC_ERR_NO_PRIVATE ;

      filter = (SINC_FILTER*) psrc->private_data ;

      /* If there is not a problem, this will be optimised out. */
      if (sizeof (filter->buffer [0]) != sizeof (data->data_in [0]))
            return SRC_ERR_SIZE_INCOMPATIBILITY ;

      filter->in_count = data->input_frames * filter->channels ;
      filter->out_count = data->output_frames * filter->channels ;
      filter->in_used = filter->out_gen = 0 ;

      src_ratio = psrc->last_ratio ;

      /* Check the sample rate ratio wrt the buffer len. */
      count = (filter->coeff_half_len + 2.0) / filter->index_inc ;
      if (MIN (psrc->last_ratio, data->src_ratio) < 1.0)
            count /= MIN (psrc->last_ratio, data->src_ratio) ;
      count = lrint (ceil (count)) ;

      /* Maximum coefficientson either side of center point. */
      half_filter_chan_len = filter->channels * (lrint (count) + 1) ;

      input_index = psrc->last_position ;
      if (input_index >= 1.0)
      {     filter->b_current = (filter->b_current + filter->channels * lrint (floor (input_index))) % filter->b_len ;
            input_index -= floor (input_index) ;
            } ;

      float_increment = filter->index_inc ;

      filter->b_current = (filter->b_current + filter->channels * lrint (floor (input_index))) % filter->b_len ;
      input_index -= floor (input_index) ;

      terminate = 1.0 / src_ratio + 1e-20 ;

      /* Main processing loop. */
      while (filter->out_gen < filter->out_count)
      {
            /* Need to reload buffer? */
            samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;

            if (samples_in_hand <= half_filter_chan_len)
            {     prepare_data (filter, data, half_filter_chan_len) ;

                  samples_in_hand = (filter->b_end - filter->b_current + filter->b_len) % filter->b_len ;
                  if (samples_in_hand <= half_filter_chan_len)
                        break ;
                  } ;

            /* This is the termination condition. */
            if (filter->b_real_end >= 0)
            {     if (filter->b_current + input_index + terminate >= filter->b_real_end)
                        break ;
                  } ;

            if (fabs (psrc->last_ratio - data->src_ratio) > 1e-10)
                  src_ratio = psrc->last_ratio + filter->out_gen * (data->src_ratio - psrc->last_ratio) / (filter->out_count - 1) ;

            float_increment = filter->index_inc * 1.0 ;
            if (src_ratio < 1.0)
                  float_increment = filter->index_inc * src_ratio ;

            increment = DOUBLE_TO_FP (float_increment) ;

            start_filter_index = DOUBLE_TO_FP (input_index * float_increment) ;

            for (ch = 0 ; ch < filter->channels ; ch++)
            {     data->data_out [filter->out_gen] = (float_increment / filter->index_inc) *
                                                                  calc_output (filter, increment, start_filter_index, ch) ;
                  filter->out_gen ++ ;
                  } ;

            /* Figure out the next index. */
            input_index += 1.0 / src_ratio ;

            filter->b_current = (filter->b_current + filter->channels * lrint (floor (input_index))) % filter->b_len ;
            input_index -= floor (input_index) ;
            } ;

      psrc->last_position = input_index ;

      /* Save current ratio rather then target ratio. */
      psrc->last_ratio = src_ratio ;

      data->input_frames_used = filter->in_used / filter->channels ;
      data->output_frames_gen = filter->out_gen / filter->channels ;

      return SRC_ERR_NO_ERROR ;
} /* sinc_process */

/*----------------------------------------------------------------------------------------
*/

static void
prepare_data (SINC_FILTER *filter, SRC_DATA *data, int half_filter_chan_len)
{     int len = 0 ;

      if (filter->b_real_end >= 0)
            return ;    /* This doesn't make sense, so return. */

      if (filter->b_current == 0)
      {     /* Initial state. Set up zeros at the start of the buffer and
            ** then load new data after that.
            */
            len = filter->b_len - 2 * half_filter_chan_len ;

            filter->b_current = filter->b_end = half_filter_chan_len ;
            }
      else if (filter->b_end + half_filter_chan_len + filter->channels < filter->b_len)
      {     /*  Load data at current end position. */
            len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;
            }
      else
      {     /* Move data at end of buffer back to the start of the buffer. */
            len = filter->b_end - filter->b_current ;
            memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,
                                    (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;

            filter->b_current = half_filter_chan_len ;
            filter->b_end = filter->b_current + len ;

            /* Now load data at current end of buffer. */
            len = MAX (filter->b_len - filter->b_current - half_filter_chan_len, 0) ;
            } ;

      len = MIN (filter->in_count - filter->in_used, len) ;
      len -= (len % filter->channels) ;

      memcpy (filter->buffer + filter->b_end, data->data_in + filter->in_used,
                                    len * sizeof (filter->buffer [0])) ;

      filter->b_end += len ;
      filter->in_used += len ;

      if (filter->in_used == filter->in_count && 
                  filter->b_end - filter->b_current < 2 * half_filter_chan_len && data->end_of_input)
      {     /* Handle the case where all data in the current buffer has been
            ** consumed and this is the last buffer.
            */

            if (filter->b_len - filter->b_end < half_filter_chan_len + 5)
            {     /* If necessary, move data down to the start of the buffer. */
                  len = filter->b_end - filter->b_current ;
                  memmove (filter->buffer, filter->buffer + filter->b_current - half_filter_chan_len,
                                          (half_filter_chan_len + len) * sizeof (filter->buffer [0])) ;

                  filter->b_current = half_filter_chan_len ;
                  filter->b_end = filter->b_current + len ;
                  } ;

            filter->b_real_end = filter->b_end ;
            len = half_filter_chan_len + 5 ;

            memset (filter->buffer + filter->b_end, 0, len * sizeof (filter->buffer [0])) ;
            filter->b_end += len ;
            } ;

      return ;
} /* prepare_data */


static double
calc_output (SINC_FILTER *filter, increment_t increment, increment_t start_filter_index, int ch)
{     double            fraction, left, right, icoeff ;
      increment_t filter_index, max_filter_index ;
      int               data_index, coeff_count, indx ;

      /* Convert input parameters into fixed point. */
      max_filter_index = INT_TO_FP (filter->coeff_half_len) ;

      /* First apply the left half of the filter. */
      filter_index = start_filter_index ;
      coeff_count = (max_filter_index - filter_index) / increment ;
      filter_index = filter_index + coeff_count * increment ;
      data_index = filter->b_current - filter->channels * coeff_count ;

      left = 0.0 ;
      do
      {     fraction = FP_TO_DOUBLE (filter_index) ;
            indx = FP_TO_INT (filter_index) ;

            icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;

            left += icoeff * filter->buffer [data_index + ch] ;

            filter_index -= increment ;
            data_index = data_index + filter->channels ;
            }
      while (filter_index >= MAKE_INCREMENT_T (0)) ;

      /* Now apply the right half of the filter. */
      filter_index = increment - start_filter_index ;
      coeff_count = (max_filter_index - filter_index) / increment ;
      filter_index = filter_index + coeff_count * increment ;
      data_index = filter->b_current + filter->channels * (1 + coeff_count) ;

      right = 0.0 ;
      do
      {     fraction = FP_TO_DOUBLE (filter_index) ;
            indx = FP_TO_INT (filter_index) ;

            icoeff = filter->coeffs [indx] + fraction * (filter->coeffs [indx + 1] - filter->coeffs [indx]) ;

            right += icoeff * filter->buffer [data_index + ch] ;

            filter_index -= increment ;
            data_index = data_index - filter->channels ;
            }
      while (filter_index > MAKE_INCREMENT_T (0)) ;

      return (left + right) ;
} /* calc_output */


Generated by  Doxygen 1.6.0   Back to index